

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at <u>www.pearson.com/uk</u>

Summer 2016 Publications Code WFM01_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles). Method mark for solving 3 term guadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2+bx+c) = (mx+p)(nx+q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

<u>Exact answers</u>

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Notes	Marks				
1.	$\sum_{r=1}^n r(r^2 -$	$-3) = \sum_{r=1}^{n} r^{3} - 3\sum_{r=1}^{n} r^{3}$						
		$=\frac{1}{4}n^2(n+1)^2 - 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r^2 - 3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1				
			Correct expression (or equivalent)	A1				
	$= \frac{1}{4}n(n+1)[n(n+1)-6]$ dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both the standard formulae							
		$=\frac{1}{4}n(n+1)\left[n^2+n-6\right]$	{this step does not have to be written]					
		$= \frac{1}{4}n(n+1)\left[n^2 + n - 6\right]$ $= \frac{1}{4}n(n+1)(n+3)(n-2)$	Correct completion with no errors	A1 cso				
				(4)				
			Question 1 Notes	4				
1.	Note		the printed equation without applying the standar	d formulae				
1.	11010		ther combination of these numbers is M0A0M0A0					
	Alt	<u>Alternative Method</u> : Obtains $\sum_{r=1}^{n} r(r^2 - 3) \equiv \frac{1}{4}n(n+1)[n(n+1) - 6] \equiv \frac{1}{4}n(n+a)(n+b)(n+c)$ So $a = 1$. $n = 1 \Rightarrow -2 = \frac{1}{4}(1)(2)(1+b)(1+c)$ and $n = 2 \Rightarrow 0 = \frac{1}{4}(2)(3)(2+b)(2+c)$						
		leading to either $b = -2, c = 3$ or	•	,				
	dM1	dependent on the previous M matrix $M = 2$						
	WITEE.	Substitutes in values of <i>n</i> and solv						
	A1	Finds $a = 1, b = 3, c = -2$ or another combination of these numbers.						
	Note	Using only a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.						
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{1}{2}n^3 - \frac{5}{4}n^2 - \frac{3}{2}n$ or $\frac{1}{4}n(n^3 + 2n^2 - 5n - 6)$						
		or $\frac{1}{4}(n^4 + 2n^3 - 5n^2 - 6n) \rightarrow \frac{1}{4}n(n+1)(n+3)(n-2)$, from no incorrect working.						
	Note	Give final A0 for eg. $\frac{1}{4}n(n+1)\left[n^2+n-6\right] \rightarrow = \frac{1}{4}n(n+1)(x+3)(x-2)$ unless recovered.						

Question Number		Scheme	Notes	Marks			
2.	$P: y^2 = 2$	$8x \text{ or } P(7t^2, 14t)$					
(a)	$(y^2 = 4ax)$	$a \Rightarrow a = 7) \Rightarrow S(7,0)$	Accept (7,0) or $x = 7$, $y = 0$ or 7 marked on the <i>x</i> -axis in a sketch	B1 (1)			
(b)	$\{A \text{ and } B \}$	have x coordinate} $\frac{7}{2}$	Divides their <i>x</i> coordinate from (a) by 2 and				
	So $y^2 = 2$	$8\left(\frac{7}{2}\right) \Rightarrow y^2 = 98 \Rightarrow y = \dots$	substitutes this into the parabola equation and takes the squure root to find $y = \dots$				
		$(7) - 3.5)^2 - (3.5)^2 \left\{ = \sqrt{(10.5)^2 - (3.5)^2} \right\}$	y = $\sqrt{\left(2("7") - \left(\frac{"7"}{2}\right)\right)^2 - \left(\frac{"7"}{2}\right)^2}$	M1			
	or $7t^2 = 3.5$	$\Rightarrow t = \sqrt{0.5} \Rightarrow y = 2(7)\sqrt{0.5}$	or solves $7t^2 = 3.5$ and finds $y = 2(7)$ "their t"				
	$y = (\pm)7$	$\sqrt{2}$	<i>At least one</i> correct exact value of <i>y</i> . Can be un-simplified or simplified.	A1			
	A, B have	coordinates $\left(\frac{7}{2}, 7\sqrt{2}\right)$ and $\left(\frac{7}{2}, -7\sqrt{2}\right)$					
	2	$\left(2(7\sqrt{2})\right)\left(\frac{7}{2}\right)$	dependent on the previous M mark A full method for finding	dM1			
	• $\frac{1}{2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	he area of triangle ABS.	ulvii			
		$=\frac{49}{2}\sqrt{2}$	Correct exact answer.	A1			
				(4)			
	Question 2 Notes						
2. (a)	Note		elevant work seen in either part (a) or part ((b)			
(b)	1 st M1	Allow a slip when candidates find the x c $0 <$ their midpoint $<$ their a	oordinate of their midpoint as long as				
	Note						
	1 st A1	Allow any exact value of either $7\sqrt{2}$, $-7\sqrt{2}$, $\sqrt{98}$, $-\sqrt{98}$, $14\sqrt{0.5}$, awrt 9.9 or awrt -9.9					
	2 nd dM1	Either $\frac{1}{2} \left(2 \times \text{their "} 7\sqrt{2} \right) \left(\text{their } x_{\text{midpoint}} \right)$ or $\frac{1}{2} \left(2 \times \text{their "} 7\sqrt{2} \right) \left(\text{their "} 7 \right) \left(\frac{1}{2} \left(2 \times \frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \left(\frac{1}{2} \left($					
	Note	Condone area triangle $ABS = \left(7\sqrt{2}\right)\left(\frac{7}{2}\right)$, i.e. (their " $7\sqrt{2}$ ") $\left(\frac{\text{their "}7\text{''}}{2}\right)$					
	2 nd A1	Allow exact answers such as $\frac{49}{2}\sqrt{2}$, $\frac{49}{\sqrt{2}}$, $24.5\sqrt{2}$, $\frac{\sqrt{4802}}{2}$, $\sqrt{\frac{4802}{4}}$, $3.5\sqrt{2}$, $49\sqrt{\frac{1}{2}}$					
		or $\frac{7}{2}\sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2\sqrt{98})$ seen by itself					
	Note	Give final A0 for finding 34.64823228	without reference to a correct exact value.				

Question Number	Scheme			Notes	Marks
3.	$f(x) = x^2 + \frac{3}{x} - 1, x < 0$				
(a)	$f'(x) = 2x - 3x^{-2}$	А		ither $x^2 \rightarrow \pm Ax$ or $\frac{3}{x} \rightarrow \pm Bx^{-2}$ e A and B are non-zero constants. Correct differentiation	M1
	$f(-1.5) = -0.75, f'(-1.5) = -\frac{13}{3}$		-4.33 or	$= -0.75$ or $f'(-1.5) = -\frac{13}{3}$ or a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$ an be implied by later working	B1
	$\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0}{-4.33}$.75 3333	Valid a	and end on the previous M mark ttempt at Newton-Raphson using values of $f(-1.5)$ and $f'(-1.5)$	dM1
	$\left\{ \alpha = -1.67307692 \text{ or } -\frac{87}{52} \right\} \Rightarrow \alpha = -1.67307692$	7		endent on all 4 previous marks -1.67 on their first iteration Ignore any subsequent iterations)	A1 cso cao
	Correct differentiation followed by		et answer	scores full marks in (a)	
	Correct answer with <u>no</u>	working	scores no	marks in (a)	(5)
(b) Way 1	f(-1.675) = 0.01458022 f(-1.665) = -0.0295768	,	within ±0	a suitable interval for x , which is .005 of their answer to (a) and at ast one attempt to evaluate $f(x)$.	M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) $\alpha = -1.67$ (2 d	p)		values correct awrt (or truncated) 1 sf, sign change and conclusion.	A1 cso
					(2)
(b)	Alt 1: Applying Newton-Raphson again E	Eg. Using	$\alpha = -1.6$	7, -1.673 or $-\frac{87}{52}$	
Way 2	• $\alpha \simeq -1.67 - \frac{-0.007507185629}{-4.415692926} \left\{ = -1.673 - \frac{0.005743106396}{-4.41783855} \left\{ = -1.673 - \frac{0.006082942257}{-4.417893838} \left\{ = -1.673 - \frac{0.006082942257}{-4.417893838} \right\}$	-1.671700	0019}	Evidence of applying Newton- Raphson for a second time on their answer to part (a)	M1
	So $\alpha = -1.67 (2 \text{ dp})$			$\alpha = -1.67$	A1
		1			(2)
					/

	Question 3 Notes									
3. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the								
		NR formula is final dM0A0.								
	B1	B1 can be given for a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$								
		Eg. either $(-1.5)^2 + \frac{3}{(-1.5)} - 1$ or $2(-1.5) - \frac{3}{(-1.5)^2}$ are fine for B1.								
	Final	This mark can be implied by applying at least one correct value of either $f(-1.5)$ or $f'(-1.5)$								
	dM1	in $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$. So just $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$ with an incorrect answer and no other evidence								
		scores final dM0A0.								
	Note	Give final dM0 for applying $1.5 - \frac{f(-1.5)}{f'(-1.5)}$ without first quoting the correct N-R formula.								
3. (b)	A1	Way 1: correct solution only								
		Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with								
		a reason and conclusion. Reference to change of sign or eg. $f(-1.675) \times f(-1.665) < 0$								
		or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must								
		be a (minimal, not incorrect) conclusion, eg. $\alpha = -1.67$, root (or α or part (a)) is correct, QED								
		and a square are all acceptable. Ignore the presence or absence of any reference to continuity.								
		A minimal acceptable reason and conclusion is "change of sign, hence root".								
		No explicit reference to 2 decimal places is required.								
	Note	Stating "root is in between -1.675 and -1.665 " without some reference to $\alpha = -1.67$ is not								
		sufficient for A1								
	Note	Accept 0.015 as a correct evaluation of $f(-1.675)$								
	A1	Way 2: correct solution only								
		Their conclusion in Way 2 needs to convey that they understand that $\alpha = -1.67$ to 2 decimal								
		places. Eg. "therefore my answer to part (a) [which must be -1.67] is correct" is fine for A1.								
	Note	$-1.67 - \frac{f(-1.67)}{f'(1.67)} = -1.67(2 \text{ dp})$ is sufficient for M1A1 in part (b).								
	Note	The root of $f(x) = 0$ is -1.67169988 , so candidates can also choose x_1 which is less than								
		-1.67169988 and choose x_2 which is greater than -1.67169988 with both x_1 and x_2 lying								
		in the interval $\begin{bmatrix} -1.675, -1.665 \end{bmatrix}$ and evaluate $f(x_1)$ and $f(x_2)$.								
3. (b)	Note	Helpful Table								
5. (0)	THUE	x $f(x)$								
		-1.675 0.014580224								
		-1.674 0.010161305								
		-1.673 0.005743106								
		-1.672 0.001325627								
		-1.671 -0.003091136								
		-1.670 -0.007507186								
		-1.669 -0.011922523								
		-1.668 -0.016337151								
		-1.667 -0.020751072								
		-1.666 -0.025164288								
	1	-1.665 -0.029576802								

Question Number		Scheme		Notes	Marks		
4.	$\mathbf{A} = \begin{pmatrix} k \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ k+2 \end{pmatrix}$, where <i>k</i> is a constant and let <i>g</i>	$g(k) = k^2 + 2k + k^2 + k^2 + 2k + k^2 +$	3			
(a)	$\left\{ \det(\mathbf{A}) = \right.$	= $k(k+2)+3$ or k^2+2k+3	Correct det(A), un-simplified or simplified	B1		
Way 1	=	$(k+1)^2 - 1 + 3$	Att	empts to complete the square [usual rules apply]	M1		
	=	$(k+1)^2 + 2 > 0$		$(k+1)^2 + 2$ and > 0	A1 cso		
(a)	$\left\{ \det(\mathbf{A}) = \right.$	= $k(k+2)+3$ or k^2+2k+3	Correct det(A), un-simplified or simplified	(3) B1		
Way 2	$\int b^2 - 4ac$	$=$ $2^2 - 4(1)(3)$	Applie	es " $b^2 - 4ac$ " to their det(A)	M1		
	• S($a^2 - 4ac = -8 < 0$ ome reference to $k^2 + 2k + 3$ being above	ve the <i>x</i> -axis		A 1		
	• S	$o \det(\mathbf{A}) > 0$		Complete solution	A1 cso		
(a)	g(k) = d	$let(\mathbf{A}) = \begin{cases} k(k+2) + 3 \text{ or } k^2 + 2k + 3 \end{cases}$	Correct det(A), un-simplified or simplified	(3) B1		
Way 3		$\det(\mathbf{A}) = \begin{cases} k(k+2) + 3 \text{ or } k^2 + 2k + 3 \\ k+2 = 0 \implies k = -1 \\ 1)^2 + 2(-1) + 3 \end{cases}$		alue of k for which $g'(k) = 0$ sutes this value of k into $g(k)$	M1		
	$g_{\min} = (-1)^2 + 2(-1) + 3$ $g_{\min} = 2$, so det(A) > 0		$g_{min} = 2$ and states det(A) > 0		A1 cso		
	Omin ,			min	(3)		
(b)	$\mathbf{A}^{-1} = \frac{1}{k}$	$\mathbf{A}^{-1} = \frac{1}{k^2 + 2k + 3} \begin{pmatrix} k+2 & -3\\ 1 & k \end{pmatrix}$		$\frac{1}{\text{their det}(\mathbf{A})} \begin{pmatrix} k+2 & -3\\ 1 & k \end{pmatrix}$	M1		
				Correct answer in terms of k	A1		
					(2) 5		
			stion 4 Notes		I		
4. (a)	B1	Also allow $k(k+2) - 3$					
	Note	Way 2: Proving $b^2 - 4ac = -8 < 0$	•				
	Note	To gain the final A1 mark for Way 2, candidates need to show $b^2 - 4ac = -8 < 0$ and make some reference to $k^2 + 2k + 3$ being above the x-axis (eg. states that coefficient of k^2 is					
		positive or evaluates det(A) for any quadratic curve that is above the <i>x</i> -ax	is) before then s	tating that $det(\mathbf{A}) > 0$.	_		
	Note	Attempting to solve det(A) = 0 by applying the quadratic formula or finding $-1\pm\sqrt{2}i$ is enough to score the M1 mark for Way 2. To gain A1 these candidates need to make					
		some reference to $k^2 + 2k + 3$ being above the x-axis (eg. states that coefficient of k^2 positive or evaluates det(A) for any value of k to give a positive result or sketches a quadratic curve that is above the x-axis) before then stating that det(A) > 0.					
(b)	A1	Allow either $\frac{1}{(k+1)^2 + 2} \begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$		····-	t.		

Question Number		Scheme	Notes	Marks		
5.	$2z + z^* =$	$\frac{3+4i}{7+i}$				
Way 1		$= \left\{ 2(a+\mathrm{i}b) + (a-\mathrm{i}b) \right\}$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$ Note: This can be seen anywhere in their solution	B1		
	= -	$\frac{(3+4i)}{(7+i)}\frac{(7-i)}{(7-i)}$	Multiplies numerator and denominator of the right hand side by $7 - i$ or $-7 + i$	M1		
	=	$\frac{25+25i}{50}$	Applies $i^2 = -1$ to and collects like terms to give right hand side = $\frac{25 + 25i}{50}$ or equivalent	A1		
		$\mathbf{i}b = \frac{1}{2} + \frac{1}{2}\mathbf{i}$	dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a =$ or $b =$	ddM1		
	$\Rightarrow a = \frac{1}{6}$	$b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1		
Way 2	(= $2(a+ib) + (a-ib)(7 + i) =$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$ Multiplies their $(3a + ib)$ by $(7 + i)$	(5) B1		
	. ,	$(7 + 7) = \dots$	Applies $i^2 = -1$ to give left hand side = $21a + 3ai + 7bi - b$	M1 A1		
		(-b) + (3a+7b) = 3 + 4i a - b = 3, 3a + 7b = 4	dependent on the previous B and M marks Equates both real parts and imaginary parts to give at least one of $a =$ or $b =$	ddM1		
	$\Rightarrow a = \frac{1}{6}$	$b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1		
		Question 5 Notes				
5.	Note	Some candidates may let $z = x$	•			
	Note	So apply the mark scheme with For the final A1 mark, you can	h $x \equiv a$ and $y \equiv b$. h accept exact equivalents for a, b .			

Question Number	Scheme		Notes	Marks	
6.	$H: xy = 25$, $P\left(5t, \frac{5}{t}\right)$ is a general point on H	I			
(a)	Either $5t\left(\frac{5}{t}\right) = 25$ or $y = \frac{25}{x} = \frac{25}{5t} = \frac{5}{t}$	or	$x = \frac{25}{y} = \frac{25}{\frac{5}{t}} = 5t$ or states $c = 5$	B1	
					(1)
(b)	$y = \frac{25}{x} = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$		$\frac{dy}{dx} = \pm k x^{-2}$ where <i>k</i> is a numerical value		
	$xy = 25 \Longrightarrow x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		Correct use of product rule. The sum of two terms, one of which is correct.	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right)$		$\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their}\frac{\mathrm{d}x}{\mathrm{d}t}}$		
	$\left\{ \text{At } A, \ t = \frac{1}{2}, \ x = \frac{5}{2}, \ y = 10 \right\} \Longrightarrow \frac{dy}{dx} = -4$		Correct numerical gradient at <i>A</i> , which is found using calculus. Can be implied by later working	A1	
	So, $m_N = \frac{1}{4}$	Appl	ies $m_N = \frac{-1}{m_T}$, to find a numerical m_N , where m_T is found from using calculus. Can be implied by later working	M1	
	• $y-10 = \frac{1}{4}\left(x-\frac{5}{2}\right)$ • $10 = \frac{1}{4}\left(\frac{5}{2}\right) + c \Rightarrow c = \frac{75}{8} \Rightarrow y = \frac{1}{4}x + \frac{1}{4}$	$+\frac{75}{8}$	Correct line method for a normal where a numerical $m_N (\neq m_T)$ is found from using calculus. Can be implied by later working	M1	
	leading to $8y - 2x - 75 = 0$ (*)		Correct solution only	A1	
					(5)
(c)	$y = \frac{25}{x} \implies 8\left(\frac{25}{x}\right) - 2x - 75 = 0$ or $x = 5t, y = \frac{5}{t} \implies$		y (y)	M1	
	Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or $x =$	5t an	d $y = \frac{5}{t}$ into the printed equation		
	or their normal equation to obtain an e	quation	n in either x only, y only or t only		
	$2x^2 + 75x - 200 = 0 \text{or} 8y^2 - 75y - 50$				
	$(2x-5)(x+40) = 0 \Rightarrow x = \dots \text{ or } (y-10)(8y+5) = 0 \Rightarrow y = \dots \text{ or } (2t-1)(t+8) = 0 \Rightarrow t = \dots$ dependent on the previous M mark Correct attempt of solving a 3TQ to find either $x = \dots, y = \dots$ or $t = \dots$				
	Finds at least one of eith	her $x =$	$x - 40$ or $y = -\frac{5}{8}$	A1	
	$P \downarrow A \uparrow$		correct coordinates (If coordinates are not can be paired together as $x =, y =$)	A1	
					(4)
					1(

	Question 6 Notes						
6. (a)	Note	A conclusion is not required on this occasion in part (a).					
	B 1	Condone reference to $c = 5$ (as $xy = c^2$ and $\left(ct, \frac{c}{t}\right)$ are referred in the Formula book.)					
(b)	Note	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right) = -\frac{1}{t^2} \Rightarrow m_N = t^2 \Rightarrow y - 10 = t^2 \left(x - \frac{5}{2}\right)$ scores only the first M1.					
		When $t = \frac{1}{2}$ is substituted giving $y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$					
		the response then automatically gets A1(implied) M1(implied) M1					
(c)	Note	You can imply the final three marks (dM1A1A1) for either					
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$					
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$					
		• $8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$					
		with no intermediate working.					
		You can also imply the middle dM1A1 marks for either					
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow x = -40$					
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow y = -\frac{5}{8}$					
		• $8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow x = -40 \text{ or } y = -\frac{5}{8}$					
		with no intermediate working.					
	Note	Writing $x = -40$, $y = -\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8}, -40\right)$ is final A0.					
	Note	Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40, -\frac{5}{8}\right)$					

• Solves both $-\frac{12}{13}x + \frac{5kx}{13} = x$ and $\frac{5}{13}x + \frac{12kx}{13} = kx$ to give $k = 5$ • Finds $k = 5$ and checks that it is true for the other component	tion Iber	Scheme			Notes	Marks	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	a) Ro	otation			Rotation	B1	
about $(0, 0)$ previous B marks being awarded. About $(0, 0)$ or about O or ab	67	degrees (anticlockwise)	awrt 67 de	awrt 67 degrees, awrt 1.2, truncated 1.1 (anticlockwise), awrt 293 degrees clockwise or awrt 5.1 clockwise			
(b) $\begin{cases} \mathbf{Q} = \begin{cases} 0 & 1 \\ 1 & 0 \end{cases}$ Correct matrix B1 Correct matrix A1 Correct matrix Correct matrix A1 Correct matrix A1 Correct matrix A1				previous B marks being awarded. About $(0, 0)$ or about <i>O</i> or about the origin			
(c) $\begin{cases} \left\{ \mathbf{R} = \mathbf{PQ} = \right\} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} & Multiplies \mathbf{P} by their \mathbf{Q} in the correct order and finds at least one element order and finds at least one element order and finds at least one element of the correct matrix A1 element of the correct field element of the correct field element elemen$			clockwise o.e.	•			(3)
(c) $\begin{cases} \left\{ \mathbf{R} = \mathbf{PQ} = \right\} \left[\frac{13}{13} - \frac{13}{13} \right] \left[\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right]; = \left[-\frac{13}{13} - \frac{13}{13} \right] \left[\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right]; = \left[-\frac{13}{13} - \frac{13}{13} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right]; = \left[-\frac{13}{13} - \frac{13}{13} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right]; = \left[\begin{array}{c} -\frac{13}{13} - \frac{13}{13} \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{13}{13} \end{array} \right] \left[\begin{array}{c} 0 & 1 \\ \frac{13}{13} - \frac{12}{13} \\ \frac{12}{13} + \frac{5kx}{13} = x \text{ or } \begin{array}{c} \frac{5}{13}x + \frac{12kx}{13} = kx \Rightarrow k = \dots \\ 1 & 0 \text{ Labor x being replaced by any non-zero number eg. 1. \\ \text{Can be implied by at least one correct fl equations below. \\ \text{Can be implied by at least one correct fl equations to form an equation in k and progresses to give k = 1 \\ \frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \begin{array}{c} \frac{5}{13}x + \frac{12kx}{13} = kx \Rightarrow k = \dots \\ 0 & 0 \text{ Labor x being replaced by any non-zero number eg. 1. \\ \text{Can be implied by at least one correct fl equations below. \\ \text{Labor x being replaced by any non-zero number eg. 1. \\ \text{Can be implied by at least one correct fl equation to form an equation in k and progresses to give k = 1 \\ \frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}x + \frac{12kx}{13} = kx = k = \dots \\ \text{So } k = 5 \end{array}$ $\begin{array}{c} \text{Dependent on all previous marks being scored in this part. Either \\ \text{So } k = 5 \text{ and checks that it is true for the other component \\ \text{Correct follow through equation in 2 \\ \text{Correct follow through equation in 2 \\ 2\theta \text{ based on their matrix R} \end{array}$ $\begin{array}{c} \text{Al cos} \\ \frac{12}{13} \frac{12}{13} \frac{12}{13} \left[\frac{x}{5x} \right] \left[\frac{x}{5x} \right] = \frac{2}{12} \\ \frac{12}{2} \frac{12}{2} \frac{12}{2} \frac{12}{2} \frac{12}{2} \frac{12}{2} \frac{13}{2} \frac{12}{2} \frac{13}{2} \frac{13}{2} \frac{13}{2} \frac{12}{2} \frac{13}{2} \frac{12}{2} \frac{13}{2} \frac{12}{2} \frac{13}{2} \frac{12}{2} \frac{12}{2} \frac{12}{2} \frac{13}{2} \frac{12}{2} \frac{13}{2} \frac{12}{2} \frac{13}{2} \frac{13}{2} \frac{12}{2} \frac{13}{$) {Q	$\mathbf{Q} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right.$			Correct matrix	B1	
(d) (d) (e) (f) (f) (f) (f) (f) (f) (f) (f		$\mathbf{R} = \mathbf{PO} = \left\{ \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ 0 & 1 \end{pmatrix} \right\} =$	$\left(-\frac{12}{13} \frac{5}{13}\right)$			M1	(1)
Way 1 $\left(\frac{1}{13} \frac{1}{13}\right) \begin{pmatrix} kx \end{pmatrix}$ $\left(kx \right)$ Allow x being replaced by any non-zero number eg. 1. Can be implied by at least one correct ft equations below. $-\frac{12}{13}x + \frac{5kx}{13} = x$ or $\frac{5}{13}x + \frac{12kx}{13} = kx \Rightarrow k =$ Uses their matrix equation to form an equation in k and progresses to give k = numerical valueSo $k = 5$ dependent on only the previous M mark k = 5Dependent on all previous marks being scored in this part. Either • Solves both $-\frac{12}{13}x + \frac{5kx}{13} = x$ and $\frac{5}{13}x + \frac{12kx}{13} = kx$ to give $k = 5$ • Finds $k = 5$ and checks that it is true for the other component • Confirms that $\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \\ \frac{5}{5x} \\ \frac{5}{12} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ 5x \\ \frac{5}{5x} \\ \frac{5}{5x$		$\left\{\mathbf{K} = \mathbf{F}\mathbf{Q} = \right\} \left(\begin{array}{cc} \frac{12}{13} & \frac{5}{13} \end{array} \right) \left(\begin{array}{cc} 1 & 0 \end{array} \right), = \left(\begin{array}{cc} \frac{5}{13} & \frac{12}{13} \end{array} \right)$		F		A1	
Way 1 $\left(\frac{1}{13} \frac{11}{13}\right) \left(kx\right)$ $\left(kx\right)$ Allow x being replaced by any non-zero number eg. 1. Can be implied by at least one correct ff equations below. $-\frac{12}{13}x + \frac{5kx}{13} = x$ or $\frac{5}{13}x + \frac{12kx}{13} = kx \Rightarrow k =$ Uses their matrix equation to form an equation in k and progresses to give k = numerical valueSo $k = 5$ dependent on only the previous M mark k = 5A1 caDependent on all previous marks being scored in this part. Either • Solves both $-\frac{12}{13}x + \frac{5kx}{13} = x$ and $\frac{5}{13}x + \frac{12kx}{13} = kx$ to give $k = 5$ A1 ca• Finds $k = 5$ and checks that it is true for the other component • Confirms that $\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \\ \frac{5}{5x} \\ \frac{5}{12} & \frac{12}{13} \\ \frac{5}{5x} \\ \frac{5}{12} & \frac{12}{13} \\ \frac{2\theta}{5x} \\ \frac{12}{13} & \frac{12}{13} \\ \frac{12}{13} & \frac{12}{13} \\ \frac{12}{13} & \frac{12}{13} & \frac{12\theta}{5x} = -\frac{5}{12} \\ \frac{12}{13} & \frac{12\theta}{13} & \frac{11}{13} \\ \frac{12}{2\theta} & \frac{11}{2arcos} \begin{pmatrix} -\frac{12}{13} \\ \frac{12}{13} \end{pmatrix} \\ \frac{12}{13} & \frac{12}{13} \end{pmatrix} = \frac{12}{13} & \frac{12}{13} & \frac{12}{13} \\ \frac{12}{13} & \frac{12}{13} & \frac{12}{13} \\ \frac{12}{1$							(2)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) y 1	$-\frac{12}{13} \frac{5}{13} \\ \frac{5}{13} \frac{12}{13} \\ kx \\ \end{bmatrix} = \begin{pmatrix} x \\ kx \\ kx \\ \end{pmatrix}$	Allow <i>x</i> being replaced by any non-zero number eg. 1.			M1	
$(d) \text{Either } \cos 2\theta = -\frac{12}{13}, \sin 2\theta = \frac{5}{13} \text{ or } \tan 2\theta = -\frac{5}{12} \text{Correct follow through equation in } 2\theta \text{ based on their matrix } \mathbf{R} \text{M1}$	$-\frac{1}{1}$	$\frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}x + \frac{12kx}{13} = \frac{5}{13}x + \frac{12kx}{13} = \frac{5}{13}x + \frac{12kx}{13} = \frac{5}{13}x + \frac{5}{13}x $			Uses their matrix equation to form an equation in k and progresses to give	M1	
Dependent on all previous marks being scored in this part. Either• Solves both $-\frac{12}{13}x + \frac{5kx}{13} = x$ and $\frac{5}{13}x + \frac{12kx}{13} = kx$ to give $k = 5$ • Finds $k = 5$ and checks that it is true for the other componentA1 eso• Confirms that $\begin{pmatrix} -\frac{12}{13} & \frac{5}{13}\\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x\\ 5x \end{pmatrix} = \begin{pmatrix} x\\ 5x \end{pmatrix}$ • Correct follow through equation in 2θ based on their matrix R M1(d)Either $\cos 2\theta = -\frac{12}{13}$, $\sin 2\theta = \frac{5}{13}$ or $\tan 2\theta = -\frac{5}{12}$ Correct follow through equation in 2θ based on their matrix R M1Way 2Full method of finding 2θ , then θ and applying $\tan \theta$ M1 $\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ $\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or $\tan\left(\operatorname{awrt} 78.7^\circ\right)$ or A1		So <i>k</i> = 5		de		A1 cao	
$(d) \text{Either } \cos 2\theta = -\frac{12}{13}, \sin 2\theta = \frac{5}{13} \text{ or } \tan 2\theta = -\frac{5}{12} \text{Correct follow through equation in} \\ \frac{(d)}{4k} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{4k} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{4k} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{4k} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{4k} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{4k} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{(d)} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Full method of finding } 2\theta, \text{ then } \theta \text{ and applying } \tan \theta \text{ M1} \\ \frac{(d)}{(d)} = \frac{12}{13} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right) \text{Correct follow through } \frac{12}{13} + \frac{12}{13} $	De	ependent on all previous marks	s being scored	d in t			
(d) Either $\cos 2\theta = -\frac{13}{13}$, $\sin 2\theta = \frac{13}{13}$ or $\tan 2\theta = -\frac{12}{12}$ 2θ based on their matrix R MI Way 2 $\begin{cases} k = \frac{1}{2} \arccos\left(-\frac{12}{13}\right) \end{cases}$ Full method of finding 2θ , then θ and applying $\tan \theta$ M1 $\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or $\tan\left(\operatorname{awrt} 78.7^\circ\right)$ or A1		• Finds $k = 5$ and checks that	at it is true for	-	15	A1 cso	
(d) Either $\cos 2\theta = -\frac{13}{13}$, $\sin 2\theta = \frac{1}{13}$ or $\tan 2\theta = -\frac{1}{12}$ 2 θ based on their matrix R M1 Way 2 $\begin{cases} k = \frac{1}{2} \arccos\left(-\frac{12}{13}\right) \end{cases}$ Full method of finding 2 θ , then θ and applying $\tan \theta$ M1 $\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or $\tan\left(\operatorname{awrt} 78.7^\circ\right)$ or A1							(4)
$\left\{k = \right\} \tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right) \qquad \tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right) \text{ or } \tan\left(\operatorname{awrt} 78.7^\circ\right) \text{ or } A1$		ther $\cos 2\theta = -\frac{12}{13}$, $\sin 2\theta = \frac{5}{13}$ of			2θ based on their matrix R		
(2 (13)) (2 (13))						M1	
tanjawri 1.5/j. Can be implied.	${k}$	$k = \frac{1}{2} \tan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right)$		tan		A1	
		Sal 5					
So $k = 5$ $k = 5$ by a correct solution only A1		So $k = 5$			k = 5 by a correct solution only	A1	(4)
							(4) 10

		Question 7 Notes
7. (a)	Note	Condone "Turn" for the 1 st B1 mark.
	Note	Penalise the first B1 mark for candidates giving a combination of transformations.
(c)	Note	Allow 1 st M1 for eg. "their matrix $\mathbf{R}' \begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ or "their matrix $\mathbf{R}' \begin{pmatrix} k \\ k^2 \end{pmatrix} = \begin{pmatrix} k \\ k^2 \end{pmatrix}$ or "their matrix $\mathbf{R}' \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix}$ or equivalent
		$\left(\cos 2\theta + \sin 2\theta\right) \left(-\frac{12}{12} + \frac{5}{12}\right)$
	Note	$y = (\tan \theta)x : \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$

Question Number	Scheme		Notes	Marks	
8.	$f(z) = z^4 + 6z^3 + 76z^2 + az + b$, a, b as	re real cons	tants. $z_1 = -3 + 8i$ is given.		
(a)	-3-8i		-3-8i	B1	
(b)	$z^2 + 6z + 73$	or any	tempt to expand $(z - (-3 + 8i))(z - (-3 - 8i))$ valid method <i>to establish a quadratic factor</i> $-3\pm 8i \Rightarrow z+3 = \pm 8i \Rightarrow z^2 + 6z + 9 = -64$ or sum of roots -6, product of roots 73 to give $z^2 \pm (sum)z + product$	M1	(1)
	$f(z) = (z^2 + 6z + 73)(z^2 + 3)$	e	$\frac{z^2 + 6z + 73}{\text{Attempts to find the other quadratic factor.}}$ g. using long division to get as far as $z^2 +$ or eg. $f(z) = (z^2 + 6z + 73)(z^2 +)$	M1	
		$z^{2} + 3$ dependent on only the previous M mark $z^{2} + 3 = 0 \Rightarrow z = \frac{1}{2} \pm \sqrt{3}i$ Correct method of solving the 2 nd quadratic factor		A1	
	$\left\{z^2+3=0 \Rightarrow z=\right\} \pm \sqrt{3}i$			dM1	
			$\sqrt{3}$ i and $-\sqrt{3}$ i	A1	
(c)			Criteria		(6)
			 -3±8i plotted correctly in quadrants 2 and 3 with some evidence of symmetry Their other two <i>complex roots</i> (which are found from solving their 2nd quadratic in (b)) are plotted correctly with some evidence of symmetry about the <i>x</i>-axis Satisfies at least one of the two criteria 	B1 ft	
	-3 Re $-\sqrt{3}$ Re -8		Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1 ft	
					(2) 9
		Ques	stion 8 Notes	I	
8. (b)	Note Give 3^{rd} M1 for $z^2 + k = 0$,	-	at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$	i	
	NoteGive 3^{rd} M0 for $z^2 + k = 0$,NoteGive 3^{rd} M0 for $z^2 + k = 0$,	$k > 0 \implies z$ $k > 0 \implies z$	$z = \pm ki$ $z = \pm k \text{ or } z = \pm \sqrt{k}$		
	Note Candidates do not need to fi	and $a = 18$,	D = 219		

Question Number	Scheme		Notes	Marks
9.	$2x^2 + 4$	x-3	= 0 has roots α, β	
(a)	$\alpha + \beta = -\frac{4}{2}$ or -2 , $\alpha\beta = -\frac{3}{2}$		Both $\alpha + \beta = -\frac{4}{2}$ and $\alpha\beta = -\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1
(i)	$\alpha^2 + \beta^2 = \left(\alpha + \beta\right)^2 - 2\alpha\beta = \dots$		Use of a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
	$= (-2)^2 - 2\left(-\frac{3}{2}\right) = 7$		7 from correct working	A1 cso
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$		Use of an appropriate and correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
	$= (-2)^3 - 3(-\frac{3}{2})(-2) = -17$ or $= (-2)(7\frac{3}{2}) = -17$		-17 from correct working	A1 cso
				(5)
(b)	Sum = $\alpha^2 + \beta + \beta^2 + \alpha$ = $\alpha^2 + \beta^2 + \alpha + \beta$ = 7 + (-2) = 5		Uses at least one of their $\alpha^2 + \beta^2$ or $\alpha + \beta$ in an attempt to find a numerical value for the sum of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1
	Product = $(\alpha^2 + \beta)(\beta^2 + \alpha)$ = $(\alpha\beta)^2 + \alpha^3 + \beta^3 + \alpha\beta$ = $\left(-\frac{3}{2}\right)^2 - 17 - \frac{3}{2} = -\frac{65}{4}$		Expands $(\alpha^2 + \beta)(\beta^2 + \alpha)$ and uses at least one of r $\alpha\beta$ or $\alpha^3 + \beta^3$ in an attempt to find a numerical value for the product of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1
	$x^2 - 5x - \frac{65}{4} = 0$		Applies $x^2 - (sum)x + product$ (Can be implied) (" = 0" not required)	M1
	$4x^2 - 20x - 65 = 0$		Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
		1.		(4)
			$\frac{\alpha^2 + \beta}{\alpha}$ and $\beta^2 + \alpha$ explicitly	
(b)		<u>0</u> an	d so $\alpha^2 + \beta = \frac{5 - 3\sqrt{10}}{2}, \beta^2 + \alpha = \frac{5 + 3\sqrt{10}}{2}$	
	$\left(x - \left(\frac{5 - 3\sqrt{10}}{2}\right)\right) \left(x - \left(\frac{5 + 3\sqrt{10}}{2}\right)\right)$		Uses $\left(x - \left(\alpha^2 + \beta\right)\right)\left(x - \left(\beta^2 + \alpha\right)\right)$ with exact numerical values. (May expand first)	M1
	$= x^{2} - \left(\frac{5+3\sqrt{10}}{2}\right)x - \left(\frac{5-3\sqrt{10}}{2}\right)x + \left(\frac{5-3\sqrt{10}}{2}\right)\left(\frac{5+3\sqrt{10}}{2}\right)$ Attempts to expand using exact numerical values for $\alpha^{2} + \beta$ and $\beta^{2} + \alpha$		M1	
	$\Rightarrow x^2 - 5x - \frac{65}{4} = 0$		Collect terms to give a 3TQ. (" = 0" not required)	M1
	$4x^2 - 20x - 65 = 0$		Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
				(4)
				9

	Question 9 Notes					
9. (a)	1 st A1	1 st A1 $\alpha + \beta = 2, \ \alpha\beta = -\frac{3}{2} \Rightarrow \alpha^2 + \beta^2 = 4 - 2(-\frac{3}{2}) = 7$ is M1A0 cso				
(a)	Note	Finding $\alpha + \beta = -2$, $\alpha\beta = -\frac{3}{2}$ by writing down or applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ but then				
		writing $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 4 + 3 = 7$ and $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = -8 - 9 = -17$				
		scores B0M1A0M1A0 in part (a).				
	Note	Applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0				
		Eg: Give no credit for $\left(\frac{-4+\sqrt{40}}{4}\right)^2 + \left(\frac{-4+\sqrt{40}}{4}\right)^2 = 7$				
		or for $\left(\frac{-4+\sqrt{40}}{4}\right)^3 + \left(\frac{-4+\sqrt{40}}{4}\right)^3 = -17$				
(b)	Note	Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (b).				
	Note	A correct method leading to a candidate stating $a = 4, b = -20, c = -65$ without writing a				
		final answer of $4x^2 - 20x - 65 = 0$ is final M1A0				

Question Number		Scheme	Notes	Marks		
10.	$u_1 = 5, u_{n+1} = 3u_n + 2, n \ge 1$. Required to prove the result, $u_n = 2 \times (3)^n - 1, n \in \mathbb{D}^+$					
(i)		= 2(3) - 1 = 5	$u_1 = 2(3) - 1 = 5$ or $u_1 = 6 - 1 = 5$	B1		
	(Assume the result is true for $n = k$)					
	$u_{k+1} = 3\Big(2($	$(3)^k - 1 + 2$	Substitutes $u_k = 2(3)^k - 1$ into $u_{k+1} = 3u_k + 2$	M1		
	$= 2(3)^{k+1} - 1$		dependent on the previous M mark Expresses u_{k+1} in term of 3^{k+1}	dM1		
			$u_{k+1} = 2(3)^{k+1} - 1$ by correct solution only	A1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be					
	<u>true for $n = 1$</u> , then the result <u>is true for all n</u>					
	Required to prove the result $\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$, $n \in \square^+$					
(ii)	<i>n</i> = 1 : LHS	$=\frac{4}{3}$, RHS $= 3 - \frac{5}{3} = \frac{4}{3}$	Shows or states both LHS = $\frac{4}{3}$ and RHS = $\frac{4}{3}$ or states LHS = RHS = $\frac{4}{3}$	B1		
	(Assume the result is true for $n = k$)					
	$\sum_{r=1}^{k+1} \frac{4r}{3^r} = 3$	$-\frac{(3+2k)}{3^k} + \frac{4(k+1)}{3^{k+1}}$	Adds the $(k+1)^{\text{th}}$ term to the sum of k terms	M1		
	= 3	$3 - \frac{3(3+2k)}{3^{k+1}} + \frac{4(k+1)}{3^{k+1}}$	dependent on the previous M markMakes 3^{k+1} or $(3)3^k$ a common denominator for their fractions.Correct expression with common	dM1		
			denominator 3^{k+1} or $(3)3^k$ for their fractions.	A1		
	$= 3 - \left(\frac{3(3+2k) - 4(k+1)}{3^{k+1}}\right) = 3 - \left(\frac{5+2k}{3^{k+1}}\right)$					
	$= 3 - \frac{(3+2(k+1))}{3^{k+1}}$		$3 - \frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only	A1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be <u>true for $n = 1$, then the result is true for all n</u>					
				6 11		
	Overtise 10 Notes					
(i) & (ii)	Question 10 Notes Note Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in the second secon					
(i) & (ii)	It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.					
(i)	Note $u_1 = 5$ by itself is not sufficient for the 1 st B1 mark in part (i).					
	Note $u_1 = 3 + 2$ without stating $u_1 = 2(3) - 1 = 5$ or $u_1 = 6 - 1 = 5$ is B0					
	Note	$u_1 = 3 + 2$ without stating $u_2 = 20.2$	$n_1 = 1 = 3$ 01 $u_1 = 0 = 1 = 3$ 18 D0			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL $\,$